Protocol for Isolation and Culture of Mouse Hepatocytes (HCs), Kupffer Cells (KCs), and Liver Sinusoidal Endothelial Cells (LSECs) in Analyses of Hepatic Drug Distribution

Author:

Elvevold Kjetil,Kyrrestad Ingelin,Smedsrød Bård

Abstract

AbstractDevelopment of the new generation of drugs (e.g., oligo- and polynucleotides administered intravascularly either as free compounds or as nano-formulations) frequently encounters major challenges such as lack of control of targeting and/or delivery. Uncontrolled or unwanted clearance by the liver is a well-known and particularly important hurdle in this respect. Hence, reliable techniques are needed to identify the type(s) of liver cells, receptors, and metabolic mechanisms that are responsible for unwanted clearance of these compounds.We describe here a method for the isolation and culture of the major cell types from mouseliver: hepatocytes (HCs), Kupffer cells (KCs), and liver sinusoidal endothelial cells (LSECs). The presently described protocol employs perfusion of the liver with a collagenase-based enzyme preparation to effectively transform the intact liver to a single cell suspension. From this initial cell suspension HCs are isolated by specified centrifugation schemes, yielding highly pure HC preparations, and KCs and LSECs are isolated by employing magnetic-activated cell sorting (MACS). The MACS protocol makes use of magnetic microbeads conjugated with specific antibodies that bind unique surface antigens on either KCs or LSECs. In this way the two cell types are specifically and separately pulled out of the initial liver cell suspension by applying a magnetic field, resulting in high purity, yield, and viability of the two cell types, allowing functional studies of the cells.If the drug compound in question is to be studied with respect to liver cell distribution of intravascularly administered drug compounds the isolated cells can be analyzed directly after isolation. Detailed studies of receptor-ligand interactions and/or dynamics of intracellular metabolism of the compound can be conducted in primary surface cultures of HCs, LSECs, and KCs established by seeding the isolated cells on specified growth substrates.

Publisher

Springer US

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3