A Brief Introduction to Quantitative Structure-Activity Relationships as Useful Tools in Predictive Ecotoxicology
Author:
Publisher
Springer US
Link
http://link.springer.com/content/pdf/10.1007/978-1-0716-0150-1_2
Reference62 articles.
1. De P, Roy K (2018) Greener chemicals for the future: QSAR modelling of the PBT index using ETA descriptors. SAR QSAR Environ Res 29:319–337
2. Gajewicz A, Jagiello K, Cronin M, Leszczynski J, Puzyn T (2017) Addressing a bottle neck for regulation of nanomaterials: quantitative read-across (Nano-QRA) algorithm for cases when only limited data is available. Environ Sci Nano 4:346–358
3. Roy K (2019) In silico drug design: repurposing techniques and methodologies. Academic Press, New York
4. Dearden JC (2017) The history and development of quantitative structure-activity relationships (QSARs). In: Oncology: breakthroughs in research and practice. IGI Global, Hershey, pp 67–117
5. Khan K, Benfenati E, Roy K (2019) Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: ranking and prioritization of the DrugBank database compounds. Ecotox Environ Safe 168:287–297
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Graph neural networks-enhanced relation prediction for ecotoxicology (GRAPE);Journal of Hazardous Materials;2024-07
2. Bio-QSARs 2.0: Unlocking a new level of predictive power for machine learning-based ecotoxicity predictions by exploiting chemical and biological information;Environment International;2024-04
3. Chemometric modeling of the lowest observed effect level (LOEL) and no observed effect level (NOEL) for rat toxicity;Environmental Science: Advances;2024
4. Physiological variables in machine learning QSARs allow for both cross-chemical and cross-species predictions;Ecotoxicology and Environmental Safety;2023-09
5. Advances of the QSAR approach as an alternative strategy in the environmental risk assessment;QSAR in Safety Evaluation and Risk Assessment;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3