BeStSel: From Secondary Structure Analysis to Protein Fold Prediction by Circular Dichroism Spectroscopy

Author:

Micsonai András,Bulyáki Éva,Kardos József

Abstract

Abstract Far-UV circular dichroism (CD) spectroscopy is a classical method for the study of the secondary structure of polypeptides in solution. It has been the general view that the α-helix content can be estimated accurately from the CD spectra. However, the technique was less reliable to estimate the β-sheet contents as a consequence of the structural variety of the β-sheets, which is reflected in a large spectral diversity of the CD spectra of proteins containing this secondary structure component. By taking into account the parallel or antiparallel orientation and the twist of the β-sheets, the Beta Structure Selection (BeStSel) method provides an improved β-structure determination and its performance is more accurate for any of the secondary structure types compared to previous CD spectrum analysis algorithms. Moreover, BeStSel provides extra information on the orientation and twist of the β-sheets which is sufficient for the prediction of the protein fold. The advantage of CD spectroscopy is that it is a fast and inexpensive technique with easy data processing which can be used in a wide protein concentration range and under various buffer conditions. It is especially useful when the atomic resolution structure is not available, such as the case of protein aggregates, membrane proteins or natively disordered chains, for studying conformational transitions, testing the effect of the environmental conditions on the protein structure, for verifying the correct fold of recombinant proteins in every scientific fields working on proteins from basic protein science to biotechnology and pharmaceutical industry. Here, we provide a brief step-by-step guide to record the CD spectra of proteins and their analysis with the BeStSel method.

Publisher

Springer US

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3