Tethered MNase Structure Probing as Versatile Technique for Analyzing RNPs Using Tagging Cassettes for Homologous Recombination in Saccharomyces cerevisiae

Author:

Teubl Fabian,Schwank Katrin,Ohmayer Uli,Griesenbeck Joachim,Tschochner Herbert,Milkereit Philipp

Abstract

AbstractMicrococcal nuclease (MNase) originating from Staphylococcus aureus is a calcium dependent ribo- and desoxyribonuclease which has endo- and exonucleolytic activity of low sequence preference. MNase is widely used to analyze nucleosome positions in chromatin by probing the enzyme’s DNA accessibility in limited digestion reactions. Probing reactions can be performed in a global way by addition of exogenous MNase, or locally by “chromatin endogenous cleavage” (ChEC) reactions using MNasefusion proteins. The latter approach has recently been adopted for the analysis of local RNA environments of MNasefusion proteins which are incorporated in vivo at specific sites of ribonucleoprotein (RNP) complexes. In this case, ex vivo activation of MNase by addition of calcium leads to RNA cleavages in proximity to the tethered anchor protein thus providing information about the folding state of its RNA environment.Here, we describe a set of plasmids that can be used as template for PCR-based MNase tagging of genes by homologous recombination in S. cerevisiae. The templates enable both N- and C-terminal tagging with MNase in combination with linker regions of different lengths and properties. In addition, an affinity tag is included in the recombination cassettes which can be used for purification of the particle of interest before or after induction of MNase cleavages in the surrounding RNA or DNA. A step-by-step protocol is provided for tagging of a gene of interest, followed by affinity purification of the resulting fusion protein together with associated RNA and subsequent induction of local MNase cleavages.

Publisher

Springer US

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3