Using R for Cell-Type Composition Imputation in Epigenome-Wide Association Studies
Reference17 articles.
1. Ziller MJ, Gu H, Müller F et al (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500(7463):477–481. https://doi.org/10.1038/nature12433
2. Liu Y, Aryee MJ, Padyukov L et al (2013) Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 31(2):142–147. https://doi.org/10.1038/nbt.2487
3. Teschendorff AE, Yang Z, Wong A et al (2015) Correlation of smoking-associated DNA methylation changes in buccal cells with DNA methylation changes in epithelial cancer. JAMA Oncol 1(4):476–485. https://doi.org/10.1001/jamaoncol.2015.1053
4. Houseman EA, Accomando WP, Koestler DC et al (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13(1). https://doi.org/10.1186/1471-2105-13-86
5. Wu C, Demerath EW, Pankow JS et al (2016) Imputation of missing covariate values in epigenome-wide analysis of DNA methylation data. Epigenetics 11(2):132–139