Author:
Venkatraghavan Vikram,Voort Sebastian R. van der,Bos Daniel,Smits Marion,Barkhof Frederik,Niessen Wiro J.,Klein Stefan,Bron Esther E.
Abstract
AbstractComputer-aided methods have shown added value for diagnosing and predicting brain disorders and can thus support decision making in clinical care and treatment planning. This chapter will provide insight into the type of methods, their working, their input data –such as cognitive tests, imaging, and genetic data– and the types of output they provide. We will focus on specific use cases for diagnosis, i.e., estimating the current “condition” of the patient, such as early detection and diagnosis of dementia, differential diagnosis of brain tumors, and decision making in stroke. Regarding prediction, i.e., estimation of the future “condition” of the patient, we will zoom in on use cases such as predicting the disease course in multiple sclerosis and predicting patient outcomes after treatment in brain cancer. Furthermore, based on these use cases, we will assess the current state-of-the-art methodology and highlight current efforts on benchmarking of these methods and the importance of open science therein. Finally, we assess the current clinical impact of computer-aided methods and discuss the required next steps to increase clinical impact.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An In-Depth Study of Alzheimer's Detection: Leveraging OASIS MRI with a 19- Layer CNN;2024 International Conference on Expert Clouds and Applications (ICOECA);2024-04-18