Integration of Multimodal Data

Author:

Lorenzi Marco,Deprez Marie,Balelli Irene,Aguila Ana L.,Altmann Andre

Abstract

AbstractThis chapter focuses on the joint modeling of heterogeneous information, such as imaging, clinical, and biological data. This kind of problem requires to generalize classical uni- and multivariate association models to account for complex data structure and interactions, as well as high data dimensionality.Typical approaches are essentially based on the identification of latent modes of maximal statistical association between different sets of features and ultimately allow to identify joint patterns of variations between different data modalities, as well as to predict a target modality conditioned on the available ones. This rationale can be extended to account for several data modalities jointly, to define multi-view, or multi-channel, representation of multiple modalities. This chapter covers both classical approaches such as partial least squares (PLS) and canonical correlation analysis (CCA), along with most recent advances based on multi-channel variational autoencoders. Specific attention is here devoted to the problem of interpretability and generalization of such high-dimensional models. These methods are illustrated in different medical imaging applications, and in the joint analysis of imaging and non-imaging information, such as -omics or clinical data.

Publisher

Springer US

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3