Main Existing Datasets for Open Brain Research on Humans

Author:

Couvy-Duchesne BaptisteORCID,Bottani Simona,Camenen Etienne,Fang Fang,Fikere MulusewORCID,Gonzalez-Astudillo JulianaORCID,Harvey JoshuaORCID,Hassanaly Ravi,Kassam IrfahanORCID,Lind Penelope A.ORCID,Liu Qianwei,Lu Yi,Nabais Marta,Rolland Thibault,Sidorenko Julia,Strike LachlanORCID,Wright MargieORCID

Abstract

AbstractRecent advances in technology have made possible to quantify fine-grained individual differences at many levels, such as genetic, genomics, organ level, behavior, and clinical. The wealth of data becoming available raises great promises for research on brain disorders as well as normal brain function, to name a few, systematic and agnostic study of disease risk factors (e.g., genetic variants, brain regions), the use of natural experiments (e.g., evaluate the effect of a genetic variant in a human population), and unveiling disease mechanisms across several biological levels (e.g., genetics, cellular gene expression, organ structure and function). However, this data revolution raises many challenges such as data sharing and management, the need for novel analysis methods and software, storage, and computing.Here, we sought to provide an overview of some of the main existing human datasets, all accessible to researchers. Our list is far from being exhaustive, and our objective is to publicize data sharing initiatives and help researchers find new data sources.

Publisher

Springer US

Reference226 articles.

1. UNESCO Recommendation on Open Science - UNESCO Digital Library. https://unesdoc.unesco.org/ark:/48223/pf0000379949.locale=en

2. Fry A, Littlejohns TJ, Sudlow C et al (2017) Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am J Epidemiol 186:1026–1034

3. Ben-Eghan C, Sun R, Hleap JS et al (2020) Don’t ignore genetic data from minority populations. Nature 585:184–186

4. Yang H-C, Chen C-W, Lin Y-T et al (2021) Genetic ancestry plays a central role in population pharmacogenomics. Commun Biol 4:1–14

5. Barton NTL Paul Resnick, and Genie (2019) Algorithmic bias detection and mitigation: Best practices and policies to reduce consumer harms. https://www.brookings.edu/research/algorithmic-bias-detection-and-mitigation-best-practices-and-policies-to-reduce-consumer-harms/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3