Melatonin Improves Drought Resistance in Maize Seedlings by Enhancing the Antioxidant System and Regulating Abscisic Acid Metabolism to Maintain Stomatal Opening Under PEG-Induced Drought

Author:

Li Zhuo,Su Xiaoyu,Chen Yulu,Fan Xiaocong,He Lingzhi,Guo Jiameng,Wang Yongchao,Yang Qinghua

Abstract

AbstractMaize (Zea mays L.) is highly sensitive to drought stress, resulting in large losses in yield; therefore, strategies aimed at enhancing drought tolerance are essential. Melatonin improves stress tolerance in plants; however, its mechanism in maize seedlings under drought stress remains unknown. Therefore, we investigated the effects of foliar-sprayed melatonin (100 umol L−1) on the antioxidant system, photosynthetic gas exchange parameters, stomatal behavior, endogenous melatonin and abscisic acid (ABA)-related gene expression in maize seedling leaves under 20% polyethylene glycol (PEG)-induced drought stress. PEG treatment resulted in oxidative stress and stomatal closure, resulting in chlorophyll degradation and inhibition of photosynthesis; thereby, reducing seedling biomass. Melatonin pretreatment significantly improved the relative water content, photosynthetic gas exchange parameters and stomatal behavior; thereby, maintaining chlorophyll contents and photosynthesis. Melatonin also stimulated the antioxidant system, enhancing the clearance of reactive-oxygen species, preventing severe damage under PEG-induced drought. Pre-treatment also increased endogenous melatonin and inhibited up-regulation of NCED1, an ABA synthesis-related gene, as well as selectively up-regulating ABA catabolic genes ABA8ox1 and ABA8ox3, reducing ABA accumulation and inducing stomatal reopening. Overall, these findings suggest that melatonin pre-treatment alleviated the inhibitory effects of drought stress on photosynthesis, enhancing tolerance in maize seedlings.

Funder

the National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3