Genome-Wide Analysis of the Thioredoxin Gene Family in Gossypium hirsutum L. and the Role of the Atypical Thioredoxin Gene GhTRXL3-2 in Flowering

Author:

Liu Hui,Li Yunfei,Huang XianzhongORCID

Abstract

AbstractThioredoxin (TRX) is a highly conserved low-molecular-weight protein and a ubiquitous antioxidant enzyme that plays key role in the regulation of plant growth and development. Here, using the whole-genome sequence, we performed a systematic analysis for the TRX gene family in upland cotton (Gossypium hirsutum L.) and analyzed their structural characteristics, evolution, and expression profiles during growth and development. At least 86 GhTRX members, 40 typical and 46 atypical, were identified in the cotton genome, and they were unevenly distributed on the 26 chromosomes. Conserved domains and phylogenic tree construction classified the typical TRX gene family into seven subfamilies and the atypical TRX into nine subfamilies. An evolutionary analysis revealed that the TRX gene family underwent purification selection during evolution. In addition, an RNA-Seq analysis showed that, during vegetative and reproductive development, the differences in transcript abundance levels and organ-specific expression patterns suggest functional diversity. Biochemical assays demonstrated that the atypical TRX protein GhTRXL3-2 interacted with the cotton FLOWERING LOCUS T protein GhFT. The overexpression of GhTRXL3-2 in Arabidopsis thaliana resulted in early flowering compared with control plants. Additionally, the silencing of GhTRXL3-2 in cotton delayed maturation, suggesting that it has important roles in cotton’s flowering regulation. These results help clarify the evolution of the TRX genes and elucidate their biological functions in cotton flowering regulation.

Funder

National Natural Science Foundation of China

the Talent Introduction Start-up Fund Project of Anhui Science and Technology University

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3