Estimation on Individual-Level Carbon Sequestration Capacity of Understory Perennial Herbs

Author:

Nam Bo Eun,Kim Jeong-Min,Lee Seungki,Son Youn Kyoung,Lee Byoung-Hee,Joo YoungsungORCID

Abstract

AbstractThe carbon sequestration capacity of plants has been used as a nature-based solution to reduce carbon emissions. Perennial herbs potentially contribute to carbon sequestration by allocating carbon to belowground parts as well as trees. As individual-level estimations have mainly been carried out for tree species, individual-level carbon sequestration for understory perennial herb species is poorly understood. To estimate the below- and aboveground carbon sequestration capacity, ten perennial herb species were planted for field experiment. Individual carbon sequestration by biomass was calculated by measuring the aboveground- and estimating belowground biomass gain at harvest. We further measured non-destructive aboveground parameters, such as photosynthesis and leaf area, to estimate the belowground biomass. Four species (Aconitum jaluense Kom., Aquilegea oxysepala Trautv. & C.A.Mey., Disporum smilacinum A.Gray, and Polygonatum odoratum var. pluriflorum (Miq.) Ohwi) showed the positive belowground carbon sequestration level during the experimental period. Correlation analyses indicated that the aboveground biomass and leaf area at senescence stage could be used as non-destructive estimates of belowground carbon sequestration. The perennial herb species habitat suitability for use as additional carbon sinks in urban forests and for forest restoration should be assessed based on the increase in belowground biomass.

Funder

National Institute of Biological Resources

Chungbuk National University

Seoul National University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3