Employee perspectives on value realization from data within data-driven business models

Author:

Förster Matthias,Bansemir Bastian,Roth Angela

Abstract

AbstractFirms are innovating data-driven business models (DDBMs) to realize value from data. Yet, making DDBMs work is challenging, and DDBMs often fall short of expected value realization. One reason for this shortfall is that firms do not know how employees, who decisively influence a DDBM’s value realization, view this complex and multi-facetted topic. We think it is necessary to understand the employees’ perspectives, the dimensions that build these perspectives and the characteristics employees are particularly interested in regarding value realization from data. We address this research gap by applying the Q-methodology to examine the perspectives among 70 employees across twelve DDBMs at a German automotive manufacturer. This yields eight perspectives, e.g., data advocacy, data caution or data practical. By exploring these perspectives, we provide a first groundwork on how employees view and appraise value realization from data which adds to the strive for mastering value realization from data within DDBMs.

Funder

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Management of Technology and Innovation,Marketing,Computer Science Applications,Economics and Econometrics,Business and International Management

Reference145 articles.

1. Achtenhagen, L., Melin, L., & Naldi, L. (2013). Dynamics of business models: Strategizing, critical capabilities and activities for sustained value creation. Long Range Planning, 46(6), 427–442. https://doi.org/10.1016/j.lrp.2013.04.002

2. Afuah, A., & Tucci, C. (2003). Internet business models and strategies: Text and cases (2nd ed.). McGraw Hill.

3. Akred, J., & Samani, A. (2018). Your data is worth more than you think. In MIT Sloan Management Review. Available online at https://sloanreview.mit.edu/article/your-datais-worth-more-than-you-think/. Accessed 11/12/2021.

4. Akter, S., & Wamba, S. F. (2016). Big data analytics in E-commerce: A systematic review and agenda for future research. Electronic Markets, 26(2), 173–194. https://doi.org/10.1007/s12525-016-0219-0

5. Al-Debei, M. M., El-Haddadeh, & Avison, D. (2008). Defining the business model in the new world of digital business. AMCIS 2008 Proceedings (pp. 300–311)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3