User preferences for privacy features in digital assistants

Author:

Ebbers FrankORCID,Zibuschka Jan,Zimmermann Christian,Hinz Oliver

Abstract

AbstractDigital assistants (DA) perform routine tasks for users by interacting with the Internet of Things (IoT) devices and digital services. To do so, such assistants rely heavily on personal data, e.g. to provide personalized responses. This leads to privacy concerns for users and makes privacy features an important component of digital assistants.This study examines user preferences for three attributes of the design of privacy features in digital assistants, namely (1) the amount of information on personal data that is shown to the user, (2) explainability of the DA’s decision, and (3) the degree of gamification of the user interface (UI). In addition, it estimates users’ willingness to pay (WTP) for different versions of privacy features.The results for the full sample show that users prefer to understand the rationale behind the DA’s decisions based on the personal information involved, while being given information about the potential impacts of disclosing specific data. Further, the results indicate that users prefer to interact with the DA’s privacy features in a serious game. For this product, users are willing to pay €21.39 per month. In general, a playful design of privacy features is strongly preferred, as users are willing to pay 23.8% more compared to an option without any gamified elements. A detailed analysis identifies two customer clusters “Best Agers” and “DA Advocates”, which differ mainly in their average age and willingness to pay. Further, “DA Advocates” are mainly male and more privacy sensitive, whereas “Best Agers” show a higher affinity for a playful design of privacy features.

Funder

Fraunhofer Institute for Systems and Innovation Research (ISI)

Publisher

Springer Science and Business Media LLC

Subject

Management of Technology and Innovation,Marketing,Computer Science Applications,Economics and Econometrics,Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3