Analysis of an Acoustic Monopole Source in a Closed Cavity via CUF Finite Elements

Author:

Moruzzi M. C.ORCID,Cinefra M.,Bagassi S.

Abstract

AbstractThe noise generated by aircraft is an important issue, which affects the external environment and the passenger’s comfort. The researches about new acoustic solutions often lead to the exploitation of innovative materials, as visco-elastic panels or acoustic metamaterials, in order to rather obtain better acoustic properties than conventional materials, in particular at low frequency. Although, there is a lack of reliable tools able to describe the complex kinematic behaviour of these new materials at low frequency. A new strong formulation, the Carrera Unified Formulation (CUF) based on the Finite Element Method (FEM), enables a wide class of refined shell models, which is able to reproduce the frequency dependent dynamic response of complex multi-layered plates. This formulation, fully developed inside the MUL2 software, is applied to vibro-acoustic analyses too, so the need to integrate new sources and boundary conditions in the software, that are essential to model the acoustic problem. A simple and powerful source is the monopole: a pulsating sphere. This source can be a first try to model the complex sources that affect the noise inside the aircraft, as the engine or the internal sources. Moreover, monopoles are widely used to estimate the transmission loss. Hence, the reason for this work: the creation inside MUL2 of a monopole boundary condition and its validation, comparing the results with those of a well-known FEM based commercial software for vibro-acoustic analyses, Actran.

Funder

Alma Mater Studiorum - Università di Bologna within the CRUI-CARE Agreement

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3