Author:
Pagani A.,Racionero Sánchez-Majano A.,Zamani D.,Petrolo M.,Carrera E.
Abstract
AbstractThe advent of Automated Fiber Placement (AFP) in aerospace composites lay-up and manufacturing has allowed orientations to vary along pre-defined curved directions rather than being forced to remain constant within the lamina. These composites are called Variable Angle Tow (VAT) or Variable Stiffness Composites (VSC). Despite the enhancements in mechanical performance offered by VAT, constraints from the manufacturing process hinder their full potential. This paper explores the effect of primary defects, i.e., gaps and overlaps, on optimal design and fundamental frequency optimization. For doing so, the Carrera Unified Formulation (CUF) and the Defect Layer Method (DLM) are integrated directly into the optimization process to provide an efficient and cost-effective framework for modeling the structural behavior and manufacturing process of VSCs. Particular attention is given to manufacturing and tow-steering simulation to quantify and map defects for each laminate layer. This research serves a dual purpose: (i) examining the impact of process-induced defects on achieving an optimal design and (ii) exploring how the choice of structural theory may affect the optimal solution.
Funder
HORIZON EUROPE European Research Council
Ministero dell'Università e della Ricerca
Politecnico di Torino
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献