Abstract
AbstractThis study employs the circular restricted three-body problem (CR3BP) as the dynamical framework, for the purpose of investigating low-thrust orbit dynamics in the Earth–Moon system. First, the effect of low thrust on some dynamical structures that exist in the CR3BP is analyzed. Low-thrust capture and escape dynamics in the proximity of the Moon is investigated for preliminary mission analysis. Then, low-thrust periodic orbits—with potential practical application—are detected. To do this, the theorem of mirror trajectories, proven 6 decades ago, is extended to low-thrust trajectories. This represents the theoretical premise for the definition and use of a numerical search methodology based on modified Poincaré maps. This approach leads to identifying several low-thrust periodic orbits in the Earth–Moon system that are infeasible if only unpowered paths are considered. Two possible applications of low-thrust periodic orbits are described: (a) cycling transfer trajectories that connect Earth and Moon continuously, and (b) non-Keplerian periodic paths about the Moon, with potential use as operational orbits for satellite constellations.
Funder
Università degli Studi di Roma La Sapienza
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Business and International Management
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献