Investigation of Sloshing Effects on Flexible Aircraft Stability and Response

Author:

Pizzoli Marco

Abstract

AbstractThe present paper provides an investigation of the effects of linear slosh dynamics on aeroelastic stability and response of flying wing configuration. The proposal of this work is to use reduced order model based on the theory of the equivalent mechanical models for the description of the sloshing dynamics. This model is then introduced into an integrated modeling that accounts for both rigid and elastic behavior of flexible aircraft. The formulation also provides for fully unsteady aerodynamics modeled in the frequency domain via doublet lattice method and recast in time-domain state-space form by means of a rational function approximation. The case study consists of the so-called body freedom flutter research model equipped with a single tank, partially filled with water, located underneath the center of mass of the aircraft. The results spotlight that neglecting such sloshing effects considering the liquid as a frozen mass may overshadow possible instabilities, especially for mainly rigid-body dynamics.

Funder

H2020 Research and Innovation Programme

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Reference15 articles.

1. Gambioli, F., Alegre Usach, R., Kirby, J., Wilson, T.: Experimental evaluation of fuel sloshing effects on wing dynamics. In: International Forum on Aeroelasticity and Structural Dynamics, IFASD 2019, Savannah. GE 9–13 June 2019 (2019)

2. Ibrahim, R.: Liquid Sloshing Dynamics: Theory and Applications. Cambridge University Press, Cambridge (2005)

3. Abramson, H.: The Dynamic Behavior of Liquids in Moving Containers with Applications to Space Vehicle Technology. NASA, Delhi (1966)

4. Graham, E.W., Rodriguez, A.M.: The Characteristics of Fuel Motion which Affect Airplane Dynamics. DOUGLAS AIRCRAFT CO INC, Long Beach (1951)

5. Firouz-Abadi, R.D., Zarifian, P., Haddadpour, H.: Effect of fuel sloshing in the external tank on the flutter of subsonic wings. J. Aerosp. Eng. 27(5) (2014)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3