High-order Accurate Beam Models Based on Discontinuous Galerkin Methods

Author:

Gulizzi VincenzoORCID,Benedetti IvanoORCID,Milazzo AlbertoORCID

Abstract

AbstractA novel high-order accurate approach to the analysis of beam structures with bulk and thin-walled cross-sections is presented. The approach is based on the use of a variable-order polynomial expansion of the displacement field throughout both the beam cross-section and the length of the beam elements. The corresponding weak formulation is derived using the symmetric Interior Penalty discontinuous Galerkin method, whereby the continuity of the solution at the interface between contiguous elements as well as the application of the boundary conditions is weakly enforced by suitably defined boundary terms. The accuracy and the flexibility of the proposed approach are assessed by modeling slender and short beams with standard square cross-sections and airfoil-shaped thin-walled cross-sections subjected to bending, torsional and aerodynamic loads. The comparison between the obtained numerical results and those available in the literature or computed using a standard finite-element method shows that the present method allows recovering three-dimensional distributions of displacement and stress fields using a significantly reduced number of degrees of freedom.

Funder

European Union - NextGenerationEU

Università degli Studi di Palermo

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Business and International Management

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3