Model-Based FDI Applied to a Piezoelectric Active Vibration Suppression System for Smart Flexible Spacecraft

Author:

Iannelli PaoloORCID,Angeletti FedericaORCID,Gasbarri PaoloORCID

Abstract

AbstractFault Detection and Isolation (FDI) techniques have captured extensive interest and attention in modern autonomous systems; in particular, they are of foremost importance in space applications, due to their scientific relevance, cost and current inability of doing on-orbit maintenance of space systems. In this scenario, FDI strategies are required to counteract possible failure events that, if not properly handled, can reduce system performance or compromise the realization of the mission objectives. In this paper, a model-based FDI strategy is implemented onboard a satellite equipped with a very large mesh reflector on which a distributed network of smart actuators/sensors is mounted to actively counteract undesired elastic vibrations. In particular, the detection and isolation of a possible piezo-actuator failure occurring in the Active Vibration Control (AVC) system of the antenna is addressed by a bank of Unknown Input Observers (UIOs). The design of the proposed UIOs is derived by solving a Linear Matrix Inequality (LMI) problem, which provides the conditions for their existence, and it is based on the linearized 3D state-space model of the controlled spacecraft, under the assumption that all the uncertainties, exogenous disturbances and measurement noises are neglected. Furthermore, pole assignment in the sense of D-stability is integrated in the standard formulation of the UIO to guarantee an adequate transient behaviour of the observers. Finally, an extensive Monte Carlo simulation campaign is conducted to assess the effectiveness of the proposed FDI architecture and its robustness against modelling uncertainties and measurement noise.

Funder

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3