Main Challenges and Goals of the H2020 STRATOFLY Project

Author:

Viola NicoleORCID,Fusaro Roberta,Saracoglu Bayindir,Schram Christophe,Grewe Volker,Martinez Jan,Marini Marco,Hernandez Santiago,Lammers Karel,Vincent Axel,Hauglustaine Didier,Liebhardt Bernd,Linke Florian,Fureby Christer

Abstract

AbstractAs eluded in previous studies, with special reference to those carried out in the European framework, some innovative high-speed aircraft configurations have now the potential to assure an economically viable high-speed aircraft fleet. They make use of unexploited flight routes in the stratosphere, offering a solution to the presently congested flight paths while ensuring a minimum environmental impact in terms of emitted noise and green-house gasses, particularly during stratospheric cruise. Only a dedicated multi-disciplinary integrated design approach could realize this, by considering airframe architectures embedding the propulsion systems as well as meticulously integrating crucial subsystems. In this context, starting from an in-depth investigation of the current status of the activities, the STRATOFLY project has been funded by the European Commission, under the framework of Horizon 2020 plan, with the aim of assessing the potential of this type of high-speed transport vehicle to reach Technology Readiness Level (TRL) 6 by 2035, with respect to key technological, societal and economical aspects. Main issues are related to thermal and structural integrity, low-emissions combined propulsion cycles, subsystems design and integration, including smart energy management, environmental aspects impacting climate change, noise emissions and social acceptance, and economic viability accounting for safety and human factors. This paper aims at summarizing the main challenges and goals of the STRATOFLY project, highlighting the steps forward with respect to the past European Projects and underlying the next planned goals.

Funder

Horizon 2020

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3