Theoretical and Numerical Modeling of Multicomponent Transcritical Diffuse Interfaces Under LRE Conditions

Author:

Cavalieri DavideORCID

Abstract

AbstractIn this study, a theoretical and numerical framework for simulating transcritical flows under a variety of conditions of interest for aerospace propulsion applications is presented. A real-fluid multicomponent and multiphase thermodynamic model, based on a cubic equation of state (EoS) and vapor–liquid equilibrium (VLE) assumptions, is presented to describe transcritical mixtures properties. The versatility of this thermodynamic model is reported since it can represent at the same time the supercritical states as well as subcritical stable two-phase states at equilibrium, via a homogeneous mixture approach. The effect this model has on the evaluation of the thermophysical variables will be emphasized. From the Computational Fluid Dynamics (CFD) point of view, the well-known numerical challenges that arise with the coupling between real-fluid thermodynamics and governing equations under transcritical conditions, are addressed by comparing a fully conservative (FC) to a quasi-conservative (QC) numerical schemes, in the context of the advection problem of a transcritical contact discontinuity.

Funder

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3