Correct approximation of IEEE 754 floating-point arithmetic for program verification

Author:

Bagnara Roberto,Bagnara Abramo,Biselli Fabio,Chiari MicheleORCID,Gori Roberta

Abstract

AbstractVerification of programs using floating-point arithmetic is challenging on several accounts. One of the difficulties of reasoning about such programs is due to the peculiarities of floating-point arithmetic: rounding errors, infinities, non-numeric objects (NaNs), signed zeroes, denormal numbers, different rounding modes, etc. One possibility to reason about floating-point arithmetic is to model a program computation path by means of a set of ternary constraints of the form "Image missing"and use constraint propagation techniques to infer new information on the variables’ possible values. In this setting, we define and prove the correctness of algorithms to precisely bound the value of one of the variables x, y or z, starting from the bounds known for the other two. We do this for each of the operations and for each rounding mode defined by the IEEE 754 binary floating-point standard, even in the case the rounding mode in effect is only partially known. This is the first time that such so-called filtering algorithms are defined and their correctness is formally proved. This is an important slab for paving the way to formal verification of programs that use floating-point arithmetics.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A variable value range analysis method based on path propagation;2023 International Conference on Power, Communication, Computing and Networking Technologies;2023-09-24

2. Trapezoidal Shaping Algorithm based on FPGA;2022 2nd International Conference on Electronic Information Engineering and Computer Technology (EIECT);2022-10

3. Approximate Translation from Floating-Point to Real-Interval Arithmetic;Lecture Notes in Computer Science;2022

4. A Practical Approach to Verification of Floating-Point C/C++ Programs with math.h/cmath Functions;ACM Transactions on Software Engineering and Methodology;2021-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3