1. Alphonse, E., & Osmani, A. (2009). Empirical study of relational learning algorithms in the phase transition framework. In Machine learning and knowledge discovery in databases (pp. 51–66).
2. Baptiste, P., Le Pape, C., Nuijten, W. (2001). Constraint-based scheduling: Applying constraint programming to scheduling problems. Kluwer Academic Publishers.
3. Barabási, A.-L., & Réka, A. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.
4. Barták, R. (2010). Constraint models for reasoning on unification in inductive logic programming. In Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2010) (pp. 101–110). Springer Verlag.
5. Barták, R., Kuželka,O., Železný, F. (2010). Using constraint satisfaction for learning hypotheses in inductive logic programming. In Proceedings of the 23rd international Florida AI Research Society conference (FLAIRS 2010) (pp. 440–441). AAAI Press.