High-temperature thermal storage-based cement manufacturing for decarbonization

Author:

Liu Xiaokang,Li Xiaobo,Yang Ronggui

Abstract

AbstractCost-effective CO2 capture is essential for decarbonized cement production since it is one of the largest CO2 emission sources, where 60% of direct emissions are from CaCO3 decomposition and 40% are from fuel combustion. This work presents a low-carbon cement manufacturing process by integrating it with renewable energy for electric heating and thermal storage to replace the burning of fossil fuels in the conventional calciner. The low-carbon renewable energy reduces the indirect CO2 emissions from electricity consumption. The high-temperature CO2 is employed as the heat transfer fluid between the energy storage system and the calciner. In the proposed basic manufacturing process, the CO2 from the CaCO3 decomposition can be directly collected without energy-consuming separation since no impurities are introduced. Furthermore, the remaining CO2 from fuel combustion in the kiln can be captured through monoethanolamine (MEA) absorption using waste heat. In the two situations, the overall CO2 emissions can be reduced by 69.7% and 83.1%, respectively, including the indirect emissions of electricity consumption. The economic performance of different energy storage materials is investigated for materials selection. The proposed manufacturing process with a few high-temperature energy storage materials (BaCO3/BaO, SrCO3/SrO, Si, etc.) offers a higher CO2 emission reduction and lower cost than alternative carbon capture routes, i.e., oxyfuel. The cost of CO2 avoided as low as 39.27 $/t can be achieved by thermochemical energy storage with BaCO3/BaO at 1300 °C, which is superior to all alternative technologies evaluated in recent studies.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3