Solar transparent and thermally insulated silica aerogel for efficiency improvement of photovoltaic/thermal collectors

Author:

Wu Lijun,Zhao Bin,Gao Datong,Jiao Dongsheng,Hu Maobin,Pei Gang

Abstract

AbstractPhotovoltaic/thermal (PV/T) utilization has been regarded as a promising technique to efficiently harvest solar energy, but its thermal efficiency highly degrades in cold seasons because of remarkable heat loss. Although various methods, such as using air or vacuum gap, have been used to reduce heat loss of the PV/T, heat radiative loss still exists. In addition, unlike selective solar absorbers, the current PV/T absorber behaves like an infrared blackbody, showing great radiative heat loss. To overcome this drawback, a novel aerogel PV/T (referred to as “A-PV/T” hereinafter) collector based on solar transparent and thermally insulated silica aerogel is proposed, which can reduce the heat loss from both the non-radiative and radiative heat transfer modes. Experimental testing demonstrates that the thermal efficiency improvement of 25.1%-348% can be achieved for PV/T within the collecting temperature range of 35–70 °C when silica aerogel is introduced, indicating a significant efficiency enhancement. Compared with traditional PV/T (referred to as “T-PV/T” hereinafter) collector, the stagnation temperatures of the A-PV/T collector are 96.7 °C and 103.1 °C in outdoor and indoor environments, which are 27.4 °C and 25.8 °C greater, respectively, indicating a heat loss suppression of the aerogel. Moreover, simulation reveals that useful heat can hardly be provided by the T-PV/T collector in cold seasons, but the A-PV/T still exists a high solar thermal performance, showing good seasonal and regional applicability.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3