Multiscale study of reactive transport and multiphase heat transfer processes in catalyst layers of proton exchange membrane fuel cells

Author:

Zhang Ruiyuan,Chen Li,Min Ting,Mu Yu-Tong,Hao Liang,Tao Wen-Quan

Abstract

AbstractImproving the performance of proton exchange membrane fuel cells (PEMFCs) requires deep understanding of the reactive transport processes inside the catalyst layers (CLs). In this study, a particle-overlapping model is developed for accurately describing the hierarchical structures and oxygen reactive transport processes in CLs. The analytical solutions derived from this model indicate that carbon particle overlap increases ionomer thickness, reduces specific surface areas of ionomer and carbon, and further intensifies the local oxygen transport resistance (Rother). The relationship between Rother and roughness factor predicted by the model in the range of 800-1600 s m-1 agrees well with the experiments. Then, a multiscale model is developed by coupling the particle-overlapping model with cell-scale models, which is validated by comparing with the polarization curves and local current density distribution obtained in experiments. The relative error of local current density distribution is below 15% in the ohmic polarization region. Finally, the multiscale model is employed to explore effects of CL structural parameters including Pt loading, I/C, ionomer coverage and carbon particle radius on the cell performance as well as the phase-change-induced (PCI) flow and capillary-driven (CD) flow in CL. The result demonstrates that the CL structural parameters have significant effects on the cell performance as well as the PCI and CD flows. Optimizing the CL structure can increase the current density and further enhance the heat-pipe effect within the CL, leading to overall higher PCI and CD rates. The maximum increase of PCI and CD rates can exceed 145%. Besides, the enhanced heat-pipe effect causes the reverse flow regions of PCI and CD near the CL/PEM interface, which can occupy about 30% of the CL. The multiscale model significantly contributes to a deep understanding of reactive transport and multiphase heat transfer processes inside PEMFCs.

Funder

National Key Research and Development Program

National Nature Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3