One-pot hydrothermal synthesis of transition metal sulfides-decorated CuS microflower-like structures for electrochemical CO2 reduction to CO

Author:

Guo YafeiORCID,Gao Yuxuan,Guo Benshuai,Luo Yangna,Zhao Guoyang,Sun Jian,Li Weiling,Wang Ruilin,Zhao Chuanwen

Abstract

AbstractElectrochemical CO2 reduction (ECR) to value-added products is regarded as a sustainable strategy to mitigate global warming and energy crisis, and designing highly efficient and robust catalysts is essential. In this work, transition metal sulfides (TMS)-decorated CuS microflower-like structures were prepared via the one-pot hydrothermal synthesis method for ECR to CO, and the influence of TMS doping on ECR performance was demonstrated. Characterization of the catalysts was performed using XRD, FESEM-EDS, N2 physisorption, and XPS, revealing the successful loading of TMS, the formation of microflower-like architectures and the generation of sulfur vacancies. Electrochemical tests demonstrated that doping ZnS, Bi2S3, CdS and MoS2 improved the intrinsic CO2 reduction activity of the CuS catalyst. Particularly, the MoS2-CuS composite catalyst with imperfect petal-like structure showed uniform distribution of edge Mo sites, which worked synergistically with the formed grain boundaries (GBs) and undercoordinated S vacancy sites in promoting CO2 activation, stabilizing *COOH adsorption, facilitating *CO desorption, and lowering the energy barrier of the potential-limiting step for improved CO selectivity. The MoS2-CuS catalyst achieved a maximum CO selectivity of 83.2% at –0.6 V versus the reversible hydrogen electrode (RHE) and a high CO cathodic energetic efficiency of 100%. At this potential, the catalyst maintained stable catalytic activity and CO selectivity during a 333-min electrolysis process. The findings will offer a promising avenue for the development of efficient and stable catalysts for CO production from ECR.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3