Techno-economic analysis of converting low-grade heat into electricity and hydrogen

Author:

Zhao Yanan,Li Mingliang,Long Rui,Liu Zhichun,Liu Wei

Abstract

AbstractLow-grade heat recovery has received increasing attention as an essential contributor to improving overall energy utilization efficiency and facilitating the carbon neutrality commitment. Here, we developed a techno-economic analysis model of converting low-grade heat into electricity and hydrogen via the osmotic heat engine (OHE) and power-to-gas facility to alleviate the dilemma of lacking practical application scenarios of waste heat. The contribution margin is optimized in real time by either sending the electricity generated by the OHE into the electrolyzer for hydrogen production or selling it at market price in Wuhan, China, thus to identify the economically viable OHE costs under different conditions. Results show that the allowed heat engine cost is significantly impacted by the capacity factor, lifetime and discount rate. The effect of the capacity size of power-to-gas facility on allowed heat engine cost strongly depends on the hydrogen price. The allowed OHE cost increases with the elevating waste heat temperature for each heat transfer scenario. The hybrid energy system can be economically competitive compared with current mature technologies when the waste heat temperature is higher than 68 ℃ and 105 ℃ for fluid and air as heat transfer fluid, respectively. The economically viable heat engine cost is expected to gradually decline from 50,043 ¥/kW to 18,741 ¥/kW within next 15 years. Incentive policy would boost the economic viability of converting low-grade heat into electricity and hydrogen.

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Economics, Econometrics and Finance (miscellaneous),Energy (miscellaneous),Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An analytical review of recent advancements on solid-state hydrogen storage;International Journal of Hydrogen Energy;2024-01

2. Low-grade heat to hydrogen: Current technologies, challenges and prospective;Renewable and Sustainable Energy Reviews;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3