Advances and outlook of TE-PCM system: a review

Author:

Liu Anbang,Xie Huaqing,Wu Zihua,Wang Yuanyuan

Abstract

AbstractThis review reports the most recent developments of thermoelectric (TE) system coupled with phase change material (PCM) and its promising integration options within various PCM deployment and structure design. These innovative TE coupled with PCM (TE-PCM) systems provide heat/cold energy with additional electric power which implies better harnessing of multiform energy. Fundamentals of TE-PCM system including thermoelectric effect are presented along with a basic mathematical formulation of the physical problem. The classification principles and configuration types of such systems are also summarized. The most representative studies related to the utilization of TE-PCM system in diversified application scenarios and their compatibility with other energy systems have been comprehensively reviewed and analyzed, including the component and structure optimization. In-depth analysis of the main technical and operational challenges in the future has been carried out, and the prospective development of more efficient TE-PCM system and its hybrid configurations are projected based on the current technological level.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

“Shu Guang” Project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation

Research Foundation of Shanghai Science and Technology Committee

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3