A machine learning assisted prediction of potential biochar and its applications in anaerobic digestion for valuable chemicals and energy recovery from organic waste

Author:

Zhang Pengshuai,Zhang Tengyu,Zhang Jingxin,Liu Huaiyou,Chicaiza-Ortiz Cristhian,Lee Jonathan T. E.,He Yiliang,Dai Yanjun,Tong Yen Wah

Abstract

AbstractThe utilization of biochar derived from biomass residue to enhance anaerobic digestion (AD) for bioenergy recovery offers a sustainable approach to advance sustainable energy and mitigate climate change. However, conducting comprehensive research on the optimal conditions for AD experiments with biochar addition poses a challenge due to diverse experimental objectives. Machine learning (ML) has demonstrated its effectiveness in addressing this issue. Therefore, it is essential to provide an overview of current ML-optimized energy recovery processes for biochar-enhanced AD in order to facilitate a more systematic utilization of ML tools. This review comprehensively examines the material and energy flow of biochar preparation and its impact on AD is comprehension reviewed to optimize biochar-enhanced bioenergy recovery from a production process perspective. Specifically, it summarizes the application of the ML techniques, based on artificial intelligence, for predicting biochar yield and properties of biomass residues, as well as their utilization in AD. Overall, this review offers a comprehensive analysis to address the current challenges in biochar utilization and sustainable energy recovery. In future research, it is crucial to tackle the challenges that hinder the implementation of biochar in pilot-scale reactors. It is recommended to further investigate the correlation between the physicochemical properties of biochar and the bioenergy recovery process. Additionally, enhancing the role of ML throughout the entire biochar-enhanced bioenergy recovery process holds promise for achieving economically and environmentally optimized bioenergy recovery efficiency. Graphical Abstract

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

National Research Foundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3