Abstract
AbstractDemethoxylation was kinetically and spectroscopically studied over three catalysts with different Ru0/Ruδ+ ratios. In-situ spectroscopic tests demonstrated that the synergy between Ru0 and Ruδ+ was crucial, and Ru0 was in charge of H2 activation and adsorption of aromatic ring while Ruδ+ adsorbed with O in methoxyl. A Langmuir–Hinshelwood kinetic model was proposed, and ratio of Ru0/Ruδ+ was the key in deciding the rate-determining step (RDS): i) desorption of toluene was RDS over catalyst with high Ru0 ratio; ii) dissociation of H2 was RDS over Ruδ+ enriched catalyst; iii) demethoxylation was rate-determined by CO water–gas shift (WGS) when Ru0/Ruδ+ approached ~ 1. The best performance was obtained over Ru/NiAl2O4-200, which effectively enabled both C-O bond activation and rapid recovery of adsorption sites for aromatic rings. Finally, in-situ DRIFT studies on methoxy decomposition and CO-WGS unraveled that the electronic composition of Ru was more stable in Ru/NiAl2O4-200 which contributes to its excellence.
Funder
National Key Research and Development Program of China
NSFC
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献