Mechanisms of strengthening energy and mass transfer in microbial conversion of flue-gas-derived CO2 to biodiesel and biogas fuels

Author:

Cheng Jun,Cen Kefa

Abstract

AbstractThe goals of national energy security and sustainable development necessitate the role of renewable energy, of which biomass energy is an essential choice for realizing the strategic energy diversification and building a low-carbon energy system. Microbial conversion of flue-gas-derived CO2 for producing biodiesel and biogas has been considered a significant technology in new energy development. Microalgae carbon sequestration is a hot research direction for researchers. However, three fundamental problems relating to energy/mass transfer and conversion remain as follows: (1) contradictory relationship between high resistance of cell membrane micropores and high flux of flue-gas-derived CO2 limits mass transfer rate of CO2 molecules across cell membrane; (2) low biocatalytic activity of intracellular enzymes with high-concentration CO2 results in difficulties in directional carbon/hydrogen conversion; (3) competition between multiple intracellular reaction pathways and high energy barriers of target products hinder the desirable cascade energy transfer. Therefore, key scientific issues of microbial energy conversion lie in the understanding on directional carbon/hydrogen conversion and desirable cascade energy transfer. Multiple researches have established a theoretical foundation of microbial energy conversion which strengthens energy/mass transfer in microbial cells. The innovative results in previous studies have been obtained as follows: (1) Reveal mass transfer mechanism of vortex flow across cell membrane micropores. (2) Propose a strategy that directionally regulates enzyme activity. (3) Establish chain reaction pathways coupled with step changes.

Funder

National key research and development program-China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3