Beyond cost reduction: improving the value of energy storage in electricity systems

Author:

Parzen MaximilianORCID,Neumann FabianORCID,Van Der Weijde Adriaan H.ORCID,Friedrich DanielORCID,Kiprakis AristidesORCID

Abstract

AbstractFrom a macro-energy system perspective, an energy storage is valuable if it contributes to meeting system objectives, including increasing economic value, reliability and sustainability. In most energy systems models, reliability and sustainability are forced by constraints, and if energy demand is exogenous, this leaves cost as the main metric for economic value. Traditional ways to improve storage technologies are to reduce their costs; however, the cheapest energy storage is not always the most valuable in energy systems. Modern techno-economical evaluation methods try to address the cost and value situation but do not judge the competitiveness of multiple technologies simultaneously. This paper introduces the ‘market potential method’ as a new complementary valuation method guiding innovation of multiple energy storage. The market potential method derives the value of technologies by examining common deployment signals from energy system model outputs in a structured way. We apply and compare this method to cost evaluation approaches in a renewables-based European power system model, covering diverse energy storage technologies. We find that characteristics of high-cost hydrogen storage can be more valuable than low-cost hydrogen storage. Additionally, we show that modifying the freedom of storage sizing and component interactions can make the energy system 10% cheaper and impact the value of technologies. The results suggest looking beyond the pure cost reduction paradigm and focus on developing technologies with suitable value approaches that can lead to cheaper electricity systems in future. Graphical Abstract

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3