An effective algorithm to detect the possibility of being MSI phenotype in endometrial cancer given the BMI status and histological subtype: a statistical study

Author:

González Villa Isabel,González Dávila Enrique FranciscoORCID,Afonso Idaira Jael Expósito,Blanco Leynis Isabel Martínez,Ferrer Juan Francisco LoroORCID,Galván Juan José CabreraORCID

Abstract

Abstract Purpose In endometrial cancer, the incidence of mutations in mismatch repair genes (MMR) is estimated at 17–30%. Patients with alterations at this level (MSI) are known to have different clinical and anatomopathological characteristics than those without this genetic alteration (MSS). In this study, we aim to identify the MSI phenotype in patients who underwent hysterectomy for endometrial cancer. We assessed the correlation of this phenotype with anatomoclinical parameters such as obesity and histological subtype. Methods/patients Clinical and anatomopathological data were collected from 147 patients diagnosed with endometrial cancer and an immunohistochemical study of MMR system proteins was performed. PMS2 and MSH6 proteins were evaluated as primary screening and subsequent evaluation of MLH1 and MSH6, respectively, if the former were negative. Statistical association between the anatomopathological data and the immunohistochemical result was analyzed. Results and conclusions 22.4% of our patients were MSI phenotype. We obtained statistically significant differences by multivariate analysis between endometrioid subtype and higher FIGO classification grade with MSI phenotype and obesity with MSS phenotype. Given these statistical results, we propose a function for predicting the probability of being MSI phenotype taking into account the histological subtype (endometrioid/non-endometrioid carcinoma) and FIGO grade as well as obesity. This prediction may be useful prior to hysterectomy, for genetic study of the MLH1 promoter and subsequent genetic counseling.

Funder

Universidad de las Palmas de Gran Canaria

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,General Medicine

Reference34 articles.

1. Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019. https://doi.org/10.1002/ijc.31937.

2. Alemán Herrera A, Rojas Martín MD, Red Española de Registros de Cáncer. Estimaciones de la incidencia de cáncer. Canarias 2018. Red Española Regist Cáncer. 2019;1–20. https://www3.gobiernodecanarias.org/sanidad/scs/content/8e1d1c9c-43fd-11e9-af3a-bd8e6246c9be/Estimacion_Incidencia_Cancer_Canarias2018.pdf

3. Risinger JI, Berchuck A, Kohler MF, Watson P, Lynch HT, Boyd J. Genetic instability of microsatellites in endometrial carcinoma. Cancer Res. 1993;53(21):5100–3 (PMID: 8221644).

4. Doghri R, Houcine Y, Boujelbène N, et al. Mismatch repair deficiency in endometrial cancer: immunohistochemistry staining and clinical implications. Appl Immunohistochem Mol Morphol. 2019;27(9):678–82. https://doi.org/10.1097/PAI.0000000000000641.

5. Colle R, Cohen R, Cochereau D, Duval A, Lascols O, Lopez-Trabada D, et al. Immunotherapy and patients treated for cancer with microsatellite instability. Bull Cancer. 2017;104(1):42–51. https://doi.org/10.1016/j.bulcan.2016.11.006.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3