Experimental characterisation of porcine subcutaneous adipose tissue under blunt impact up to irreversible deformation

Author:

Lanzl FelicitasORCID,Duddeck Fabian,Willuweit Saskia,Peldschus Steffen

Abstract

Abstract A deeper understanding of the mechanical characteristics of adipose tissue under large deformation is important for the analysis of blunt force trauma, as adipose tissue alters the stresses and strains that are transferred to subjacent tissues. Hence, results from drop tower tests of subcutaneous adipose tissue are presented (i) to characterise adipose tissue behaviour up to irreversible deformation, (ii) to relate this to the microstructural configuration, (iii) to quantify this deformation and (iv) to provide an analytical basis for computational modelling of adipose tissue under blunt impact. The drop tower experiments are performed exemplarily on porcine subcutaneous adipose tissue specimens for three different impact velocities and two impactor geometries. An approach based on photogrammetry is used to derive 3D representations of the deformation patterns directly after the impact. Median values for maximum impactor acceleration for tests with a flat cylindrical impactor geometry at impact velocities of 886 mm/s, 1253 mm/s and 2426 mm/s amount to 61.1 g, 121.6 g and 264.2 g, respectively, whereas thickness reduction of the specimens after impact amount to 16.7%, 30.5% and 39.3%, respectively. The according values for tests with a spherically shaped impactor at an impact velocity of 1253 mm/s are 184.2 g and 78.7%. Based on these results, it is hypothesised that, in the initial phase of a blunt impact, adipose tissue behaviour is mainly governed by the behaviour of the lipid inside the adipocytes, whereas for further loading, contribution of the extracellular collagen fibre network becomes more dominant.

Funder

Ludwig-Maximilians-Universität München

Publisher

Springer Science and Business Media LLC

Subject

Pathology and Forensic Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3