Abstract
AbstractHere, we present the results from a population study that evaluated the performance of massively parallel sequencing (MPS) of short tandem repeats (STRs) with a particular focus on DNA intelligence databasing purposes. To meet this objective, 247 randomly selected reference samples, earlier being processed with conventional capillary electrophoretic (CE) STR sizing from the Austrian National DNA Database, were reanalyzed with the PowerSeq 46Y kit (Promega). This sample set provides MPS-based population data valid for the Austrian population to increase the body of sequence-based STR variation. The study addressed forensically relevant parameters, such as concordance and backward compatibility to extant amplicon-based genotypes, sequence-based stutter ratios, and relative marker performance. Of the 22 autosomal STR loci included in the PowerSeq 46GY panel, 99.98% of the allele calls were concordant between MPS and CE. Moreover, 25 new sequence variants from 15 markers were found in the Austrian dataset that are yet undescribed in the STRSeq online catalogue and were submitted for inclusion. Despite the high degree of concordance between MPS and CE derived genotypes, our results demonstrate the need for a harmonized allele nomenclature system that is equally applicable to both technologies, but at the same time can take advantage of the increased information content of MPS. This appears to be particularly important with regard to database applications in order to prevent false exclusions due to varying allele naming based on different analysis platforms and ensures backward compatibility.
Funder
Directorate-General for Research and Innovation
University of Innsbruck and Medical University of Innsbruck
Publisher
Springer Science and Business Media LLC
Subject
Pathology and Forensic Medicine
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献