Self- and non-self-DNA on hands and sleeve cuffs

Author:

Henry Léonie,Zieger MartinORCID

Abstract

AbstractStudying DNA transfer and persistence has become increasingly important over the last decade, due to the impressive sensitivity of modern DNA detection methods in forensic genetics. To improve our understanding of background DNA that could also potentially be transferred, we analyzed the DNA composition on the outside of sleeve cuffs and sampled DNA directly from the hands of four different collaborators upon their arrival at work during 25 working days. Sampling of their hands was repeated after several hours working in our department. The shedder status of the participants, as assumed from previous internal studies, was well re-produced in the study. However, we noticed that the DNA shedding capacity could also change drastically during the day, with one participant showing a more than sixfold increase between hands sampled in the morning and hands sampled in the afternoon. As expected, poor DNA shedders carry more relative amounts of non-self-DNA on their hands than good shedders. Non-self-alleles were detected in 95% of the samples. We also observed potential effects of hand washing and the mode of transport to get to work on the DNA amount. People living with family members occasionally carried their DNA on their hands and more frequently on their sleeve cuffs. Sleeve cuffs, as being close to our hands, have a large potential to transfer DNA from one place to another, yet they have sparsely been studied as DNA transfer intermediates so far. In general, we collected consistently more DNA from the sleeve cuffs than from the hands of the participants, demonstrating their importance as potential transfer vectors. More DNA was recovered from sleeve cuffs made of synthetic fabric than from cuffs made of cotton or leather. In the afternoon, DNA from co-habitant family members could not be detected on the hands anymore and the detection of profiles from colleagues became more frequent. From two out of 100 analyzed sleeve cuffs and two out of 200 sampled hands, we established unknown major DNA profiles that would have been suitable for an entry in the national DNA database. This finding demonstrates the possibility to transfer DNA that has most likely been picked up somewhere in the public space.

Funder

University of Bern

Publisher

Springer Science and Business Media LLC

Subject

Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3