The four-minute approach revisited: accelerating MRI-based multi-factorial age estimation

Author:

Neumayer BernhardORCID,Lesch AndreasORCID,Thaler Franz,Widek ThomasORCID,Tschauner SebastianORCID,De Tobel JannickORCID,Ehammer Thomas,Kirnbauer BarbaraORCID,Boldt JulianORCID,van Wijk MayonneORCID,Stollberger RudolfORCID,Urschler MartinORCID

Abstract

Abstract Objectives This feasibility study aimed to investigate the reliability of multi-factorial age estimation based on MR data of the hand, wisdom teeth and the clavicles with reduced acquisition time. Methods The raw MR data of 34 volunteers—acquired on a 3T system and using acquisition times (TA) of 3:46 min (hand), 5:29 min (clavicles) and 10:46 min (teeth)—were retrospectively undersampled applying the commercially available CAIPIRINHA technique. Automatic and radiological age estimation methods were applied to the original image data as well as undersampled data to investigate the reliability of age estimates with decreasing acquisition time. Reliability was investigated determining standard deviation (SSD) and mean (MSD) of signed differences, intra-class correlation (ICC) and by performing Bland-Altman analysis. Results Automatic age estimation generally showed very high reliability (SSD < 0.90 years) even for very short acquisition times (SSD ≈ 0.20 years for a total TA of 4 min). Radiological age estimation provided highly reliable results for images of the hand (ICC ≥ 0.96) and the teeth (ICC ≥ 0.79) for short acquisition times (TA = 16 s for the hand, TA = 2:21 min for the teeth), imaging data of the clavicles allowed for moderate acceleration (TA = 1:25 min, ICC ≥ 0.71). Conclusions The results demonstrate that reliable multi-factorial age estimation based on MRI of the hand, wisdom teeth and the clavicles can be performed using images acquired with a total acquisition time of 4 min.

Publisher

Springer Science and Business Media LLC

Subject

Pathology and Forensic Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3