Mechanical or thermal damage: differentiating between underlying mechanisms as a cause of bone fractures

Author:

S Divya,Krap TristanORCID,Duijst Wilma,Aalders Maurice C. G.,Oostra Roelof-Jan

Abstract

Abstract To investigate the differences between pre- and post-fire fractures, 30 human forearm bones were subjected to either blunt-force impact, burning, or both. Bones, covered in soft tissue and wrapped in clothing, were burned in a reconstructed house fire. The burning context and dynamics led to differential burning, that was equal amongst the three groups. To evaluate the damage to the bones, a data collection sheet was developed based on the current literature on fracture features. To analyze the relation between exposure temperature and fracture class and occurrence, color was measured to estimate the exposure temperature. Observable and measurable changes on bone, and fracture surfaces, were macro- and microscopically analyzed. Many features overlapped between the three groups, and thus are not usable for differentiation. Fractures caused by blunt force impact (post-mortem, pre-fire) showed a rough fracture surface with smoothness in curved/slanted regions near the margin after burning, while heat-induced bone fractures showed a smooth fracture surface. The margins and surface of bone fractures that originated after the fire (indirect heat-induced) were evenly discolored, whereas heat-induced bone fractures showed uneven discoloration of the fracture margin and surface. Although there were generally more heat-induced fractures in the 450–700 °C range, no other distinctive trend was observed between exposure temperature and class of fractures.

Publisher

Springer Science and Business Media LLC

Subject

Pathology and Forensic Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An overview of the heat-induced changes of the chemical composition of bone from fresh to calcined;International Journal of Legal Medicine;2024-01-25

2. Hidden lesions: a case of burnt remains;Forensic Sciences Research;2023-06

3. Temperature-specific spectral shift of luminescing thermally altered human remains;International Journal of Legal Medicine;2023-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3