Molecular clocks in ancient proteins: Do they reflect the age at death even after millennia?

Author:

Mahlke Nina SophiaORCID,Renhart Silvia,Talaa Dorothea,Reckert Alexandra,Ritz-Timme Stefanie

Abstract

AbstractAge at death estimation in cases of human skeletal finds is an important task in forensic medicine as well as in anthropology. In forensic medicine, methods based on “molecular clocks” in dental tissues and bone play an increasing role. The question, whether these methods are applicable also in cases with post-depositional intervals far beyond the forensically relevant period, was investigated for two “protein clocks”, the accumulation of D-aspartic acid (D-Asp) and the accumulation of pentosidine (Pen) in dentine. Eight teeth of skeletons from different burial sites in Austria and with post-depositional intervals between c. 1216 and c. 8775 years were analysed. The results of age at death estimation based on D-Asp and Pen in dentine were compared to that derived from a classical morphological examination. Age at death estimation based on D-Asp resulted consistently in false high values. This finding can be explained by a post-mortem accumulation of D-Asp that may be enhanced by protein degradation. In contrast, the Pen-based age estimates fitted well with the morphological age diagnoses. The described effect of post-mortem protein degradation is negligible in forensically relevant time horizons, but not for post-depositional intervals of thousands of years. That means that the “D-Asp clock” loses its functionality with increasing post-depositional intervals, whereas Pen seems to be very stable. The “Pen-clock” may have the potential to become an interesting supplement to the existing repertoire of methods even in cases with extremely long post-depositional intervals. Further investigations have to test this hypothesis.

Publisher

Springer Science and Business Media LLC

Subject

Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3