Deep learning in forensic gunshot wound interpretation—a proof-of-concept study

Author:

Oura Petteri,Junno Alina,Junno Juho-Antti

Abstract

AbstractWhile the applications of deep learning are considered revolutionary within several medical specialties, forensic applications have been scarce despite the visual nature of the field. For example, a forensic pathologist may benefit from deep learning-based tools in gunshot wound interpretation. This proof-of-concept study aimed to test the hypothesis that trained neural network architectures have potential to predict shooting distance class on the basis of a simple photograph of the gunshot wound. A dataset of 204 gunshot wound images (60 negative controls, 50 contact shots, 49 close-range shots, and 45 distant shots) was constructed on the basis of nineteen piglet carcasses fired with a .22 Long Rifle pistol. The dataset was used to train, validate, and test the ability of neural net architectures to correctly classify images on the basis of shooting distance. Deep learning was performed using the AIDeveloper open-source software. Of the explored neural network architectures, a trained multilayer perceptron based model (MLP_24_16_24) reached the highest testing accuracy of 98%. Of the testing set, the trained model was able to correctly classify all negative controls, contact shots, and close-range shots, whereas one distant shot was misclassified. Our study clearly demonstrated that in the future, forensic pathologists may benefit from deep learning-based tools in gunshot wound interpretation. With these data, we seek to provide an initial impetus for larger-scale research on deep learning approaches in forensic wound interpretation.

Funder

University of Oulu including Oulu University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Pathology and Forensic Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3