Improving 3D-3D facial registration methods: potential role of three-dimensional models in personal identification of the living

Author:

Gibelli DanieleORCID,Palamenghi AndreaORCID,Poppa PasqualeORCID,Sforza ChiarellaORCID,Cattaneo CristinaORCID,De Angelis DaniloORCID

Abstract

AbstractPersonal identification of the living from video surveillance systems usually involves 2D images. However, the potentiality of three-dimensional facial models in gaining personal identification through 3D-3D comparison still needs to be verified. This study aims at testing the reliability of a protocol for 3D-3D registration of facial models, potentially useful for personal identification. Fifty male subjects aged between 18 and 45 years were randomly chosen from a database of 3D facial models acquired through stereophotogrammetry. For each subject, two acquisitions were available; the 3D models of faces were then registered onto other models belonging to the same and different individuals according to the least point-to-point distance on the entire facial surface, for a total of 50 matches and 50 mismatches. RMS value (root mean square) of point-to-point distance between the two models was then calculated through the VAM® software. Intra- and inter-observer errors were assessed through calculation of relative technical error of measurement (rTEM). Possible statistically significant differences between matches and mismatches were assessed through Mann–Whitney test (p < 0.05). Both for intra- and inter-observer repeatability rTEM was between 2.2 and 5.2%. Average RMS point-to-point distance was 0.50 ± 0.28 mm in matches, 2.62 ± 0.56 mm in mismatches (p < 0.01). An RMS threshold of 1.50 mm could distinguish matches and mismatches in 100% of cases. This study provides an improvement to existing 3D-3D superimposition methods and confirms the great advantages which may derive to personal identification of the living from 3D facial analysis.

Funder

Università degli Studi di Milano

Publisher

Springer Science and Business Media LLC

Subject

Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3