Whole-genome sequencing of artificial single-nucleotide variants induced by DNA degradation in biological crime scene traces

Author:

Schulze Johann KristinaORCID,Bauer Hannah,Wiegand Peter,Pfeiffer Heidi,Vennemann Marielle

Abstract

AbstractThe aim of this study was to identify artificial single-nucleotide variants (SNVs) in degraded trace DNA samples. In a preliminary study, blood samples were stored for up to 120 days and whole-genome sequencing was performed using the Snakemake workflow dna-seq-gatk-variant-calling to identify positions that vary between the time point 0 sample and the aged samples. In a follow-up study on blood and saliva samples stored under humid and dry conditions, potential marker candidates for the estimation of the age of a blood stain (= time since deposition) were identified. Both studies show that a general decrease in the mean fragment size of the libraries over time was observed, presumably due to the formation of abasic sites during DNA degradation which are more susceptible to strand breaks by mechanical shearing of DNA. Unsurprisingly, an increase in the number of failed genotype calls (no coverage) was detected over time. Both studies indicated the presence of artificial SNVs with the majority of changes happening at guanine and cytosine positions. This confirms previous studies and can be explained by depurination through hydrolytic attacks which more likely deplete guanine while deamination leads to cytosine to thymine variants. Even complete genotype switches from homozygote 0/0 genotypes to the opposite 1/1 genotypes were observed. While positions with such drastic changes might provide suitable candidate markers for estimating short-term time since deposition (TsD), 11 markers were identified which show a slower gradual change of the relative abundance of the artificial variant in both blood and saliva samples, irrespective of storage conditions.

Funder

Deutsche Forschungsgemeinschaft

Westfälische Wilhelms-Universität Münster

Publisher

Springer Science and Business Media LLC

Subject

Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3