Estimation of population affinity using proximal femoral measurements based on computed tomographic images in the Japanese and western Australian populations

Author:

Torimitsu SuguruORCID,Nakazawa Akari,Flavel Ambika,Swift Lauren,Makino Yohsuke,Iwase Hirotaro,Franklin Daniel

Abstract

AbstractThe present study analyzes morphological differences femora of contemporary Japanese and Western Australian individuals and investigates the feasibility of population affinity estimation based on computed tomographic (CT) data. The latter is deemed to be of practical importance because most anthropological methods rely on the assessment of aspects of skull morphology, which when damaged and/or unavailable, often hampers attempts to estimate population affinity. The study sample comprised CT scans of 297 (146 females; 151 males) Japanese and 330 (145 females; 185 males) Western Australian adult individuals. A total of 10 measurements were acquired in two-dimensional CT images of the left and right femora; two machine learning methods (random forest modeling [RFM]) and support vector machine [SVM]) were then applied for population affinity classification. The accuracy of the two-way (sex-specific and sex-mixed) model was between 71.38 and 82.07% and 76.09–86.09% for RFM and SVM, respectively. Sex-specific (female and male) models were slightly more accurate compared to the sex-mixed models; there were no considerable differences in the correct classification rates between the female- and male-specific models. All the classification accuracies were higher in the Western Australian population, except for the male model using SVM. The four-way sex and population affinity model had an overall classification accuracy of 74.96% and 79.11% for RFM and SVM, respectively. The Western Australian females had the lowest correct classification rate followed by the Japanese males. Our data indicate that femoral measurements may be particularly useful for classification of Japanese and Western Australian individuals.

Funder

The University of Tokyo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3