Accounting for multiple testing in the analysis of spatio-temporal environmental data

Author:

Cortés José,Mahecha Miguel,Reichstein Markus,Brenning Alexander

Abstract

AbstractThe statistical analysis of environmental data from remote sensing and Earth system simulations often entails the analysis of gridded spatio-temporal data, with a hypothesis test being performed for each grid cell. When the whole image or a set of grid cells are analyzed for a global effect, the problem of multiple testing arises. When no global effect is present, we expect $$ \alpha $$α% of all grid cells to be false positives, and spatially autocorrelated data can give rise to clustered spurious rejections that can be misleading in an analysis of spatial patterns. In this work, we review standard solutions for the multiple testing problem and apply them to spatio-temporal environmental data. These solutions are independent of the test statistic, and any test statistic can be used (e.g., tests for trends or change points in time series). Additionally, we introduce permutation methods and show that they have more statistical power. Real-world data are used to provide examples of the analysis, and the performance of each method is assessed in a simulation study. Unlike other simulation studies, our study compares the statistical power of the presented methods in a comprehensive simulation study. In conclusion, we present several statistically rigorous methods for analyzing spatio-temporal environmental data and controlling the false positives. These methods allow the use of any test statistic in a wide range of applications in environmental sciences and remote sensing.

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,General Environmental Science,Statistics and Probability

Reference40 articles.

1. Beck PSA, Goetz SJ (2012) Corrigendum: satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ Res Lett 7(2):029501. https://doi.org/10.1088/1748-9326/7/2/029501

2. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc 57(1):289–300

3. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188. https://doi.org/10.1214/aos/1013699998

4. Bonferroni CE (1936) Teoria Statistica Delle Classi e Calcolo Delle Probabilità. Pubblicazioni Del R Istituto Superiore Di Scienze Economiche e Commerciali Di Firenze 8:3–62

5. Bretz F, Hothorn T, Westfall PH (2011) Multiple comparisons using R. CRC Press, Boca Raton

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3