Abstract
AbstractThe analysis of record-breaking events is of interest in fields such as climatology, hydrology or anthropology. In connection with the record occurrence, we propose three distribution-free statistics for the changepoint detection problem. They are CUSUM-type statistics based on the upper and/or lower record indicators observed in a series. Using a version of the functional central limit theorem, we show that the CUSUM-type statistics are asymptotically Kolmogorov distributed. The main results under the null hypothesis are based on series of independent and identically distributed random variables, but a statistic to deal with series with seasonal component and serial correlation is also proposed. A Monte Carlo study of size, power and changepoint estimate has been performed. Finally, the methods are illustrated by analyzing the time series of temperatures at Madrid, Spain. The R package publicly available on CRAN implements the proposed methods.
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,General Environmental Science,Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献