Pivotal discrepancy measures for Bayesian modelling of spatio-temporal data

Author:

Morris Lindsay R.,Sibanda NokuthabaORCID

Abstract

AbstractWithin the field of geostatistics, Gaussian processes are a staple for modelling spatial and spatio-temporal data. Statistical literature is rich with estimation methods for the mean and covariance of such processes (in both frequentist and Bayesian contexts). Considerably less attention has been paid to developing goodness-of-fit tests for assessment of model adequacy. Jun et al. (Environmetrics 25(8):584–595, 2014) introduced a statistical test that uses pivotal discrepancy measures to assess goodness-of-fit in the Bayesian context. We present a modification and generalization of their statistical test. The initial method involves spatial partitioning of the data, followed by evaluation of a pivotal discrepancy measure at each posterior draw to obtain a posterior distribution of pivotal statistics. Order statistics from this distribution are used to obtain approximate p-values. Jun et al. (Environmetrics 25(8):584–595, 2014) use arbitrary partitions based on pre-existing spatial boundaries. The partitions are made to be of equal size. Our contribution is two-fold. We use K-means clustering to create the spatial partitions and we generalise Jun et al.’s approach to incorporate unequal partition sizes. Observations from a spatial or spatio-temporal process are partitioned using an appropriate feature vector that incorporates the geographic location of the observations into subsets (not necessarily of the same size). The method’s viability is illustrated in a simulation study, and in an application to hoki (Macruronus novaezelandiae) catch data from a survey of the sub-Antarctic region.

Funder

Victoria University of Wellington

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,General Environmental Science,Statistics and Probability

Reference35 articles.

1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Proceedings of the second international symposium on information theory. Akadèmiai Kiaodó, pp 267–281

2. Alsabti K, Ranka S, Singh V (1997) An efficient k-means clustering algorithm. Electr Eng Comput Sci 43:1–10

3. Bagley NW, Ballara SL, O’Driscoll RL, Fu D, Lyon WS (2013) A review of hoki and middle-depth summer trawl surveys of the sub-Antarctic, November December 1991–1993 and 2000–2009. Ministry for Primary Industries, Wellington

4. Banerjee S, Carlin BP, Gelfand AE (2014) Hierarchical modeling and analysis for spatial data. CRC Press, New York

5. Bastos LS, O’Hagan A (2009) Diagnostics for Gaussian process emulators. Technometrics 51(4):425–438

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SPATIO-TEMPORAL MODELLING FOR NONSTATIONARY POINT REFERENCED DATA;Bulletin of the Australian Mathematical Society;2022-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3