A pre-whitening with block-bootstrap cross-correlation procedure for temporal alignment of data sampled by eddy covariance systems

Author:

Vitale Domenico,Fratini Gerardo,Helfter Carole,Hortnagl Lukas,Kohonen Kukka-Maaria,Mammarella Ivan,Nemitz Eiko,Nicolini Giacomo,Rebmann Corinna,Sabbatini Simone,Papale Dario

Abstract

AbstractThe eddy covariance (EC) method is a standard micrometeorological technique for monitoring the exchange rate of the main greenhouse gases across the interface between the atmosphere and ecosystems. One of the first EC data processing steps is the temporal alignment of the raw, high frequency measurements collected by the sonic anemometer and gas analyser. While different methods have been proposed and are currently applied, the application of the EC method to trace gases measurements highlighted the difficulty of a correct time lag detection when the fluxes are small in magnitude. Failure to correctly synchronise the time series entails a systematic error on covariance estimates and can introduce large uncertainties and biases in the calculated fluxes. This work aims at overcoming these issues by introducing a new time lag detection procedure based on the assessment of the cross-correlation function (CCF) between variables subject to (i) a pre-whitening based on autoregressive filters and (ii) a resampling technique based on block-bootstrapping. Combining pre-whitening and block-bootstrapping facilitates the assessment of the CCF, enhancing the accuracy of time lag detection between variables with correlation of low order of magnitude (i.e. lower than $$-1$$ - 1 ) and allowing for a proper estimate of the associated uncertainty. We expect the proposed procedure to significantly improve the temporal alignment of the EC time-series measured by two physically separate sensors, and to be particularly beneficial in centralised data processing pipelines of research infrastructures (e.g. the Integrated Carbon Observation System, ICOS-RI) where the use of robust and fully data-driven methods, like the one we propose, constitutes an essential prerequisite.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3