Testing environmental effects on taxonomic composition with canonical correspondence analysis: alternative permutation tests are not equal

Author:

ter Braak Cajo J. F.ORCID,te Beest Dennis E.ORCID

Abstract

AbstractAfter applying canonical correspondence analysis to metagenomics data with hugely different library sizes (site totals) it became evident that Canoco and the R-packages ade4 and vegan can yield (at least up to 2022) very different P-values in statistical tests of the relationship between taxonomic composition (species composition) and predictors (environmental variables and/or treatments). The reason is that vegan and Canoco up to version 5.12 apply residualized response permutation (but ignore the model intercept), whereas ade4 applies predictor permutation. Predictor permutation, when extended to residualized predictor permutation, is applicable in partial constrained ordination. This paper shows by simulation that residualized response permutation can yield a very inflated Type I error rate, if the abundance data are both overdispersed and highly variable in site total. In contrast, residualized predictor permutation controlled the type I error rate and had good power, also when the predictors were skewed or binary. After square-root or log transformation of the abundance data, the differences between the permutation methods became small. Residualized predictor permutation is recommended, particularly in testing trait–environment relationships using double constrained correspondence analysis, because this method also critically depends on the species totals, which are generally highly variable. It is implemented in Canoco 5.15 and the R-code of this paper.

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,General Environmental Science,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3