Abstract
AbstractWe aimed to tackle a common problem in post-fire tree mortality where the number of trees that survived surpasses the number of dead trees. Here, we investigated the factors that affect Korean red pine (Pinus densiflora Siebold & Zucc.) tree mortality following fires and assessed the statistical effects of class-balancing methods when fitting logistic regression models for predicting tree mortality using empirical bootstrapping (B = 100,000). We found that Slope, Aspect, Height, and Crown Ratio potentially impacted tree mortality, whereas the bark scorch index (BSI) and diameter at breast height (DBH) significantly affected tree mortality when fitting a logistic regression with the original dataset. The same variables included in the fitted logistic regression model were observed using the class-balancing regimes. Unlike the imbalanced scenario, lower variabilities of the estimated parameters in the logistic models were found in balanced data. In addition, class-balancing scenarios increased the prediction capabilities, showing reduced root mean squared error (RMSE) and improved model accuracy. However, we observed various levels of effectiveness of the class-balancing scenarios on our post-fire tree mortality data. We still suggest a thorough investigation of the minority class, but class-balancing scenarios, especially oversampling strategies, are appropriate for developing parsimonious models to predict tree mortality following fires.
Funder
National Institute of Forest Science
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,General Environmental Science,Statistics and Probability